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Abstract. We present a new way to define and compute the maximum significance achievable for signal and
background processes at the LHC, using all available phase space information. As an example, we show that
a light Higgs boson produced in weak-boson fusion with a subsequent decay into muons can be extracted
from the backgrounds. The method, aimed at phenomenological studies, can be incorporated in parton-level
event generators and accommodate parametric descriptions of detector effects for selected observables.

1 Introduction

The large hadron collider (LHC) will have a tremendous
capacity to search for new particles, such as the standard
model Higgs boson or new particles suggested by various
scenarios for physics beyond the standard model. For such
searches, it is important to asses the experimental sensitiv-
ity, which requires a description of the experimental search
technique to isolate signal-rich data. Traditionally, this has
been accomplished by using ad hoc kinematic cuts. At the
parton level this process of designing cuts by hand to iso-
late signal-enhanced phase space regions (which emulates
the traditional experimental practice) is not necessary. In
this paper we present a new method of computing the sta-
tistical significance of a hypothesized signal via direct in-
tegration of the likelihood ratio. This technique does not
require the identification of powerful discriminating vari-
ables or techniques to estimate probability density func-
tions from a discrete sample of events. Instead, we com-
pute the likelihood ratio exactly over the full phase space,
which implies that this expected significance is an upper
bound. This maximal significance indicates if a more de-
tailed study with a full detector simulation is warranted
and provides a target significance to which any experimen-
tal study can be compared.
To demonstrate the power of this method, we consider

the production of the standard model Higgs boson at the
LHC via weak-boson fusion with a subsequent decay to
muons. The weak-boson fusion production of a Higgs bo-
son with a subsequent decay to tau leptons originally pro-
posed in [1, 2] has been firmly established by ATLAS and
CMS as the main discovery channel for a light Higgs bo-
son in the standard model (recent overviews can be found
in [3–5]) as well as in its supersymmetric extension [6].
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While QCD effects can be a danger for most LHC analyses,
additional jet radiation turns into a useful tool in the case
of weak-boson fusion signals [7–9]. Observation of the same
process with a decay to muons can experimentally confirm
Yukawa couplings and their scaling with the masses for
non-third-generation fermions.
The expected significance of a search for H → µµ

was estimated for weak-boson fusion [10] and gluon fu-
sion [11, 12] production modes. For a 120 GeV Higgs boson
mass, the best kinematic cuts found in [10] result in a 1.8 σ
significance. The authors of that analysis note that many
observables display additional discriminating power and
suggest that neural networks or other multivariate proced-
ures could enhance the sensitivity. Using our new method
we find that the maximum possible (target) significance for
H→ µµ is much higher; i.e., the cut analysis can indeed be
significantly improved.

2 Neyman–Pearson lemma

Our approach is based on the Neyman–Pearson lemma:
The likelihood ratio is the most powerful variable or test
statistic for a hypothesis test between a simple null hypoth-
esis (i.e. one having no free parameters) – background only
– and an alternate hypothesis – signal plus background; for
a proof and corresponding definitions, see e.g. [13], and for
a pedagogical introduction in the context of high-energy
physics, see [14]. Maximum power is formally defined as
the minimum probability for a type II error (false nega-
tive) for a given probability for a type I error (false pos-
itive). If we assume that the signal-plus-background hy-
pothesis is true, the most powerful method has the low-
est probability of mistaking the signal for a background
fluctuation.
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The Neyman–Pearson lemma is commonly used to
claim optimality, but these claims can be misleading. The
reason is that the probability density function (PDF) of
a multi-dimensional observable x for a given hypothesis is
not experimentally known. Instead, experimentalists typ-
ically use a discrete sample of events {xi} to approximately
estimate the PDF [15]. In practice, the size of the sample
limits the dimensionality of the PDF that can be estimated
to one or two dimensions, or it requires one to neglect cor-
relations among the observables – both of which invalidate
strict claims of optimality. In contrast, in phenomenology
we can use the parton-level transition amplitude for a pro-
cess (at a given order in perturbation theory) to exactly
compute the PDF over the full phase space.
Two main ingredients are needed to calculate the dis-

tribution of the likelihood ratio for the background-only
and signal-plus-background hypotheses. First, we have to
evaluate identical sets of phase space points for signal and
background processes, which is not part of standardMonte
Carlo event generators. Secondly, we need to bootstrap the
likelihood ratio distribution for one event to the distribu-
tion for a fixed luminosity including Poisson fluctuations.
Both ingredients are discussed in the next section. We
then consider an example: a light Higgs boson produced
via weak-boson fusion and decaying to muons. To achieve
a minimum level of realism, we generalize our method to
include experimental resolutions and detector effects.
It should be noted that this work builds on several tech-

niques used in experimental analyses, but it extends that
work and applies it in a phenomenological context. For
instance, the literature is replete with measurement tech-
niques that use – to varying degrees – the matrix element to
describe kinematic distributions [17–20]. A qualitative dis-
tinction of this work is that we are estimating the sensitiv-
ity of a search for a hypothesized particle instead of meas-
uring a theoretical parameter with data (e.g. the mass of
the top quark or the helicity of theW boson). In particular,
we are not trying to identify the maximum-likelihood esti-
mator for a parameter to be extracted from data. The pro-
cess of evaluating the likelihood of an event in real data is
significantly different from constructing hypothetical data
sets, and this leads to significant differences in the imple-
mentation of the algorithms (in particular, the two main
ingredients mentioned in the previous paragraph). Our ap-
proach to the incorporation of experimental resolutions is
very similar to the recent work at the Tevatron, generi-
cally referred to as “matrix element method” [21–23], and
we try to use a similar notation and terminology to make
the correspondence clear. Furthermore, we build on the
statistical techniques (e.g. (2)–(5)) used in the LEP Higgs
working group [16], which generally has not been matched
with the matrix element method.
In short, our method is a novel combination of the LEP

statistical formalism with parton-level transition ampli-
tudes used to define and compute a mathematically well
defined maximum expected significance. Note that we do
not attempt to identify any powerful discriminating ob-
servables, nor do we attempt to compute an observed
significance based on experimental data [25, 26]. Instead,
we formulate and answer the question: what is the max-

imum expected significance of a potential physics signal, e.g.
a Higgs boson decaying to muons?

3 Likelihood ratio and discovery potential

We first limit ourselves to a signal process and its irre-
ducible backgrounds, i.e. signal and background processes
with identical degrees of freedom in the final state, dis-
tinguished by (kinematic) distributions. To compute the
expected signal and background rates we integrate the ma-
trix elements squared over the phase space, with or without
(acceptance) cuts, using a Monte Carlo integration. This
method probes the phase space with random numbers. Ide-
ally, the dimension of the random number vector r is given
by the number of degrees of freedom in the final-state mo-
menta after all kinematic constraints. The random number
vector forms a (minimal) basis for all final-state configura-
tions. We can schematically write

σtot =

∫
cuts

dPSMPSdσPS =

∫
cuts

drM(r)dσ(r) , (1)

where the phase space boundaries are included in the in-
tegral, and the differential cross section dσ(r) includes
all phase space factors and the Jacobian for transforming
the integration to the random number basis. The integra-
tion over the parton distributions is included in the phase
space integral. The measurement function M can be used
to include additional cuts or to incorporate event weights
(e.g. particle identification efficiencies) as a function of
any observable. Removing unwanted parts of the phase
space through cuts on observable quantities consistently
removes the contribution of these phase space regions from
all processes. Because the random numbers parameterize
the entire phase space, all potentially available informa-
tion about the process is included in the array of event
weights (M dσ)(r). Note that this phase space integration
above is written assuming a simple cross section expression
dσ; however, it can be replaced with any combination of
differential cross sections that modern parton-level event
generators predict.
A cut analysis defines a signal-rich region bounded by

upper and lower limits on observables and then counts
events in that region. Ultimately, the variable that discrim-
inates between signal and background – the test statistic
– is simply the number of events observed in this region.
Predicting the expected number of background events b
and signal events s enables us to adjust the cut values that
optimize the experimental sensitivity. More sophisticated
techniques use multivariate algorithms, such as neural net-
works, to define more complicated signal-like regions, but
the test statistic often remains unchanged. In all of these
counting analyses, the likelihood of observing n events as-
suming the background-only hypothesis is simply given by
the Poisson distribution Pois(n|b) = e−bbn/n!.
There are extensions to this number counting, assum-

ing we know the distribution of a discriminating observ-
able x (which may be multi-dimensional). We assume that
for the background-only hypothesis H0 this distribution is
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fb(x), while for the signal-plus-background hypothesis H1
it is fs+b(x) = [sfs(x)+ bfb(x)]/(s+ b) assuming no inter-
ference. Following the Neyman–Pearson lemma, the most
powerful test statistic is the likelihood ratio for the en-
tire experiment’s data. The total likelihood for the full-
experiment observable x= {xj} can be factorized into the
Poisson likelihood to observe n events and the product of
the individual event’s likelihood f(xj):

Q(x) =
L(x|H1)

L(x|H0)
=
Pois(n|s+ b)

∏n
j=1 fs+b(xj)

Pois(n|b)
∏n
j=1 fb(xj)

= e−s
(
s+ b

b

)n∏n
j=1 fs+b(xj)∏n
j=1 fb(xj)

,

q(x)≡ lnQ(x) =−s+
n∑
j=1

ln

(
1+
sfs(xj)

bfb(xj)

)
. (2)

We compute the normalized probability distributions f(x)
from the parton-level matrix elements. This way we con-
struct a log-likelihood ratio map of all possible final-state
phase space configurations using the normalized probabil-
ity distributions dσ(r)/σtot for the signal and background
hypotheses:

q(r) =−σtot,sL+ln

(
1+
dσs(r)

dσb(r)

)
; (3)

L is the integrated luminosity. To construct the single-
event probability distribution ρ1,b(q) we combine the back-
ground event weight with the log-likelihood ratio map q(r)
from (3), which in general is not invertible:

ρ1,b(q0) =

∫
dr
dσb(r)

σtot,b
δ(q(r)− q0) . (4)

For multiple events, the distribution of the log-likelihood
ratio ρn,b can be computed by repeated convolutions
of the single event distribution. This convolution we
can either perform implicitly with approximate Monte
Carlo techniques [27], or analytically using a Fourier
transform [28].
The expected log-likelihood ratio distribution for

a background including Poisson fluctuations in the number
of events takes the form ρb(q) =

∑
n Pois(n|b)ρn,b(q). To

compute this ρb(q) from the single-event likelihood ρ1,b(q)
given by (4) we first Fourier transform all ρ functions into
complex-valued functions of the Fourier conjugate of like-
lihood ratio, e.g. ρ1,b(q̄). The Fourier-transformed n-event
likelihood ratio is now given by ρn,b = (ρ1,b)

n, equivalent
to a convolution in q-space. The sum over n in the formula
for ρb(q) now has a simple form in the Fourier domain:
ρb = exp[b(ρ1,b− 1)]. For the signal-plus-background hy-
pothesis we expect s events from the ρ1,s distribution and
b events from the ρ1,b distribution. Similar to the above
formula we have ρs+b = exp[b(ρ1,b−1)+ s(ρ1,s−1)]. This
form we can transform back and obtain the log-likelihood
ratio distributions ρb(q) and ρs+b(q).

Given a log-likelihood ratio q we can calculate the
background-only confidence level, CLb:

CLb(q) =

∫ ∞
q

dq′ρb(q
′) . (5)

To estimate the discovery potential of a future experi-
ment we assume the signal-plus-background hypothesis to
be true and compute CLb for the median of the signal-
plus-background distribution q∗s+b. This expected back-
ground confidence level can be converted into an equivalent
number of Gaussian standard deviations and the signif-
icance written as Zσ by implicitly solving CLb(q

∗
s+b) =

(1− erf(Z/
√
2))/2 is one for Z.

4 Higgs decay to muons

To determine the maximal significance in a strict sense we
should not include detector effects, which always decrease
the significance. However, in our example of weak-boson
fusion H → µµ the experimental resolution on the invari-
ant mass mµµ is much larger than the Higgs width: about
1.6GeV for CMS and 2.0 GeV for ATLAS [29, 30]. To ob-
tain a semi-realistic result we introduce a Gaussian smear-
ing for mµµ into (1). This Gaussian shape is just a simple
numerical choice and could be replaced with any other
smearing prescription or fast detector simulation. We con-
volute our momentum smearing with the Breit–Wigner-
shaped Higgs propagator; in our case, the combination is
completely dominated by the much larger Gaussian width.
We introduce a new random number r∗m corresponding

to the smearedm∗µµ and integrate over a transfer function
from the true mµµ to the smeared m

∗
µµ by aligning one of

the original random numbers rm withmµµ:

σtot =

∫
dr⊥dr

∗
m

∫ ∞
−∞
drmM(r)dσ(r)W

(
rm, r

∗
m

)
. (6)

The original random number vector r is split into r =
{r⊥, rm}. In our case, the transfer function W is a nor-
malized Gaussian giving the likelihood to reconstructm∗µµ
given the true mµµ and the experimental mass resolution.
We trivially get back (1) forW (rm, r

∗
m)→ δ(rm− r

∗
m).

In general one must be careful about the mapping be-
tween parton-level quantities and their observable counter-
parts. As in most experimental analyses that use the ma-
trix element method, the jet direction is assumed to be
well measured. We do not include a jet energy scale in the
transfer function W , because, unlike the top mass meas-
urement with a hadronically decaying resonance, the jet
energy scale is not a dominant experimental issue for this
search. In particular, the jet momenta have relatively flat
distributions, i.e. their variation on the scale of detector ef-
fects is small [10]. In the general case, one should consider
all permutations between out-going quarks and gluons with
jets; however, in the case of weak-boson fusion, the signal-
like regions of phase space have more than three units of
pseudorapidity separating the tagging jets,whichmakes the
association of parton to jet unambiguous. In other words,
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adding the alternative jet–parton assignment would give
a negligible contribution to the event weight. The corres-
pondence of the muons is also clear due to their charge.
From (1) it is obvious how to include an experimen-

tal mass resolution: We replace the event weights (M dσ)
by the integral (M

∫
drmdσW ) and evaluate them over

the smeared phase space {r⊥, r∗m}. Because the random
numbers form a (minimal) basis for all final-state configu-
rations there is no ‘back door’ for the true (infinitely well
measured)mµµ to enter the likelihood calculation. A rough
approximation to incorporating the mµµ mass resolution
could be an increased physical Higgs width. It replaces the
Gaussian smearing with a Breit–Wigner function; we com-
pared this approximate method with the proper smearing
procedure and found that the difference in the final results
was small but not negligible.
For all details of the signal and background simulation

(using CTEQ 5L parton distributions) we refer to [10].
There, after very basic cuts the signal cross section for
a 120GeV Higgs is 0.22 fb, hidden under 0.33 fb of elec-
troweak Z production and 2.6 fb of QCD Z production,
where the Z decays into muons. All other backgrounds
combined contribute less than 0.01 fb, which allows us
to neglect them. It is worth mentioning that the elec-
troweak Z production consists of as many as 48 diagrams
for a fixed flavor configuration, which is substantially more
complicated than the search for single top production [24].
Conservatively assuming no additional information from
higher-order jet radiation, we could applyK factors to the
signal and cross section rates, but this would lead beyond
this proof-of-principle letter.
To probe the likelihood ratio over the full phase space,

we relax the cuts for a 120GeV standard model Higgs bo-
son to mere acceptance cuts. All cross sections are finite, so
the cut values have no effect on the likelihood we obtain.
Using 220 points we integrate over the final-state phase
space projected onto the log-likelihood ratio q(r) according
to (4). The phase space points used for this integration are
defined by the same grid we use for the integration over the
signal and background amplitudes described in (6); this
way we can check the total rates to ensure that the like-
lihood integration covers the entire phase space. For each
phase space point we integrate over the truemµµ as shown
in (6), using a proper phase space mapping. Note that this
internal integration does not have to use the same grid for
signal and background.
The resulting log-likelihood distributions ρb(q) and

ρs+b(q) are shown in Fig. 1. From the background PDF we
extract the signal significance for an integrated luminos-
ity of 300 fb−1 as 3.54σ for CMS and 3.19σ for ATLAS.
Note that this significance estimate neglects theoretical
uncertainty in the overall rate since the signal has small
higher-order corrections [31, 32] and the normalization of
the background will be well measured with 300 fb−1 of
data. Also note that this significance does not include
a minijet veto because only two jets are included in our
parton-level transition amplitude; in principle, the same
procedure could be repeated with a higher-order tree-level
or a next-to-leading order calculation. Following [10] we
can estimate the effect of a minijet veto, which increases

Fig. 1. Normalized ρb(q) and ρs+b(q) distributions, corres-
ponding to the full-experiment log-likelihood ratio in (2). These
distributions define the expected significance

Fig. 2. Muon invariant mass distribution for the 120 GeV
Higgs signal and Z+jets background with acceptance cuts
only (upper curves) and after a cut on the log–likelihood ratio
q(r)>−1.5 (lower curves). The curves correspond to CMS and
illustrate that events with high q(r) have an increased signal
purity and signal-like characteristics

the significance to ∼ 4.4σ for CMS. Survival probabilities
for the veto neglect pile-up effects, which will degrade the
enhancement in significance. Combining both experiments
the significance even without a minijet veto is 4.77σ.
The most relevant kinematic distribution is the recon-

structed Higgs massmµµ. In the upper curves of Fig. 2 we
show it for signal and backgrounds without kinematic or
likelihood cuts. The signal shows a smeared mass peak,
while the backgrounds are flat. To illustrate how the
method isolates signal-rich phase space regions, we apply
a likelihood ratio cut q(r) >−1.5. Roughly a third of the
signal events survive this cut, and each of the backgrounds
are reduced to a rate comparable to the signal. After the
likelihood cut the backgrounds show the same kinematic
features as the signal, i.e. a peak inmµµ.
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5 Detector effects and reducible backgrounds

The procedure for incorporating detector smearing on ob-
servables described above is tailored for smearing of a few
observables, which are isolated in the phase space integra-
tion. Nevertheless, it is possible to generalize the smear-
ing procedure. In essence, a complete detector smearing
requires an integration over a fixed set of experimental ob-
servables with a nested integration over the remaining de-
grees of freedom in the phase space. The latter include the
unsmeared (true) observables, as shown in (6), as well as
the unobservable longitudinal component of neutrino mo-
menta at a hadron collider or the momentum of particles
not passing the acceptance cuts. As mentioned in the pre-
vious section and discussed in the literature related to the
matrix element method, one should take care to include in
the transfer function all relevant detector effects and con-
sider all permutations that arise from ambiguities in the
mapping from parton-level quantities to their final-state
observables.
We usually include detector effects by smearing all

final-state four-momenta; however, this can be computa-
tionally inefficient. If we instead choose not to smear some
of the observables, we must remain vigilant to insure that
there is no ‘back door’ through which four-momentum con-
servation together with unsmeared observables implicitly
evade smearing. We avoid this ‘back door’ explicitly in (6)
by factorizing the basis of the phase space into orthogonal
components rm and r⊥.
After generalizing our method to smear multiple ob-

servables we can now incorporate reducible backgrounds,
i.e. background whose final-state configurations have more
degrees of freedom than the signal. We simply pick a set of
observables that is common to all signal and background
processes, and we marginalize the additional background
degrees of freedom. Flavor tagging efficiencies and fake
rates can be included in the event weights through W . In
these scenarios, the interpretation of the resulting signif-
icance is more vague: it is the maximal significance given
the specified set of observables and the assumptions in the
transfer and measurement functions.

6 Conclusions

We have described a way to compute the mathematically
strict maximum significance for a set of signal and back-
ground processes at the parton level. Our method is based
on the Neyman–Pearson lemma and can be used to decide
if a new physics search at high-energy colliders has a suf-
ficiently large discovery potential to justify a dedicated
analysis.
While our example is fairly simple, including only irre-

ducible backgrounds and incorporating experimental reso-
lution for only a single observable, we have outlined the
extension of the method to include general detector effects.
This approach to including detector effects follows closely
the recent experimental work at the Tevatron referred to
as ‘the matrix element method’. The next step will be to

implement this likelihood computation into a parton-level
event generator with a simple and fast simulation of detec-
tor effects [33].
Weak-boson fusion production of a Higgs boson with

a subsequent decay to muons is the perfect showcase for
this new method: it suffers from very low signal rate and
from the lack of distributions that clearly distinguish sig-
nal from background. A very basic cut analysis in [10]
quotes a significance of 1.8σ for 300 fb−1 for a single ex-
periment. In particular, [10] found that a cut analysis was
likely not the best-suited strategy for this signal. Applying
our method we arrive at a possible maximum significance
of 3.54σ (CMS with 300 fb−1). By increasing the complex-
ity of the final state, higher-order QCD effects can be ex-
ploited using a minijet veto [7–9], which could increase the
significance to ∼ 4.4σ. Not only is this result ground for
a more careful study by the experimental collaborations,
but it also indicates that without a luminosity upgrade
ATLAS and CMS combined may be able to observe the
decayH→ µµ.
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